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Stereoselective Synthesis of ABC-Ring System of Hemibrevetoxin B
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The 6, 6, 7-membered tricyclic ether ring system (ABC-
ring) of hemibrevetoxin B was stereoselectively synthesized.
The crucial steps in the present synthesis involve the ring
expansion of tetrahydropyran to oxepane, 6-endo cyclization of
epoxy alcohol, and insertion of a C-4 unit to the A-ring.

Hemibrevetoxin B (1),! a potent neurotoxin isolated from
the red tide organism Gymnodinium breve, has a 6, 6, 7, 7-
tetracyclic skeleton (ABCD-ring) having 10 chiral centers, an
o-vinyl aldehyde and a Z-diene moieties. The unique structure
and potent activity have attracted the attention of synthetic
organic chemists, and the total syntheses of 1 were
accomplished by Nicolaou and Yamamoto groups.2 We have
recently reported the stereoselective synthesis of the C- and
CD-ring systems of hemibrevetoxin B (1) based on the ring
expansion of cyclic ethers.2b  We now report the
stereoselective construction of the ABC-ring system of 1 using
a model compound 5.

CHO

Hemibrevetoxin B (1)

The 7-membered ether 5 corresponding to the C-ring
system of 1 was synthesized using the unique rearrangement-
ring expansion recently reported by us.3 The Sharpless
asymmetric epoxidation (AE)4 of 2 with t-BuOOH, Ti(O-i-
Pr)4, and (-)-DIPT followed by PPTS treatment produced diol
3, which was converted into mesylate 4 in 4 steps; (1)
mesylation of the primary alcohol,’ (2) epoxide formation, (3)
addition of a vinyl group, and (4) mesylation. Upon treatment
of 4 with Zn(OAc); in ag AcOH at 50 °C, the expected
rearrangement proceeded smoothly giving the ring expanded 7-
membered ether, which was treated with KoCO3 to give
alcohol 51in 82% yield. After protection of the tertiary alcohol
as a TMS ether, 5§ was subjected to ozonolysis and the Wittig
reaction to give o,B-unsaturated ester 6 in 89% yield.
Reduction of 6 with DIBAH followed by the Sharpless AE
using (-)-DET stereoselectively produced a-epoxide 7 in 67%
yield. Here we examined the 6-endo cyclization of the epoxide
9 using Nicolaou's procedure,® which was expected to give 6-
membered ether 11. The alcohol 7 was converted into olefin 9
via aldehyde 8. Deprotection of the silyl ether 9 with n-BugNF
followed by PPTS treatment gave unsatisfactory results
producing a 1:1 mixture of 6- and 5-membered ethers, 11 and
12 in 86% yield.” Better result (11:12 = 3.8:1, 78%) for 6-
endo-cyclization was obtained by treatment of 9 with aq
AcOH, in which desilylation and cyclization took place
simultaneously. After extensive investigations, we have
succeeded in performing 6-endo selective cyclization which
involved a styryl group next to the epoxide as a controller.8
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Reagents and conditions: a) t-BuOOH, Ti(O-i-Pr)4, (-)-DIPT,
MS-4A, CH,Cly, -23 °C; b) PPTS, CH,Cly, rt (74% from 2); c)
MsCI, collidine, CH,Cl», -78 °C ~ rt; d) KoCO3, MeOH, rt; ¢)
vinylMgBr, Cul, THF, -20 °C (64% from 3); f) MsCl, Et3N,
CHCly, 1t (76%); g) Zn(OAc),, AcOH-H,0 (1:1), 50 °C; h)
K2COs3, MeOH, 1t (82% from 4); i) TMSOTT, 2,6-lutidine,
CH;Cly, 1t; j) O3, MeOH, -78 °C; Me;S, -78 °C ~ rt; k)
Ph3P=CHCO,Me, PhH, reflux (89% from 5); 1) DIBAH,
PhMe, -78 °C (91%); m) t-BuOOH, Ti(O-i-Pr)4, (-)-DET,
CH;Cly, -23 °C (74%); n) SOsz-pyridine, EtsN, CH,Cl,,
DMSO, 0 °C; o) PhaP*tMel-, NaN(TMS),, THF, 0 °C (31%
from 7); p) PhsPTCH,PhCl-, NaN(TMS),, THF, 0 °C (72%
from 7).
Scheme 1.

The styryl group was introduced by the Wittig reaction of 8
with Ph3P=CHPh to give 10 (72%; (E)- and (Z)-mixture, 1:8).
Deprotection of the silyl group of 10 with n-BugNF gave an
alcohol, and upon treatment with PPTS, 6-endo-cyclization
took place under virtually complete stereoselection giving the
desired 6-membered ether 13 (86%; (E)- and (Z)-mixture, 1:8).
Acetylation of 13 and successive ozonolysis gave aldehyde 14
which was treated with allylmagnesium chloride in the
presence of ZnCl, to give a separable 1:1.7 mixture of o- and
3-diols 15a and 15b, quantitatively. The introduction of a C-4
unit into the A-ring was then successfully undertaken. Each
ozonolysis of 15a and 15b gave lactols 16a and 16b which
were treated with CHy=C(CH2OAc)CH,TMS in the presence
of TMSOTSf in MeCN to give 17 (55%) and 18 (60%),
respectively. The 60-hydroxy acetate 17 was converted into
the desired 20 via ketone 19. Oxidation of 17 with TPAP and
NMO provided ketone 19 in 71% yield.9 The NMR analysis
of 1910 suggested the chair conformation of the A-ring with a
C4p axial side chain: the nOe between the protons at C3 and
C8, at C5o. and C70 in 19 and long-range coupling!! (J=1.2
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Reagents and conditions: a) n-BuyNF, THF, rt; PPTS, CH,Cly,
rt (86%) b) AcOH-H0 (10:1), rt (78%); ¢) n-BugNF, THF, rt;
d) PPTS, CH,Cly, 1t (86% from 10); e) Acy0, pyridine, rt; f)
O3, MeOH, -78 °C; Me3S, -78 °C ~ 1t; g) allylIMgCl, ZnCl»,
THF, 0 °C (100% from 13); h) O3, CH»Cl», -78 °C; Me3S, -78
°C ~ rt; i) CHp=C(CH20ACc)CHTMS, TMSOTT, MeCN, 0 °C
(55% for 17 from 15a, 60% for 18 from 15b); j) TPAP, NMO,
CHCly, 1t (71%); k) L-Selectride, THF, -78 ~ -30 °C (71%); 1)
K2CO3, MeOH, 1t (87%); m) MnQ», ether, rt (82%).

Scheme 2.

Hz) of the diaxial protons at C5a and C70. were observed. L-
Selectride reduction of 19 proceeded from the less hindered o~
side as expected, giving 6B-alcohol 20 in 71% yield.2f
Hydrolysis of the 6B-hydroxy isomer 18 also gave allyl alcohol
20 (87%), which was finally oxidized with MnO> in ether to
give aldehyde 2112 in 82% yield. The !H NMR data for 21
were in good accordance with those of the corresponding
positions of hemibrevetoxin B (1).

Thus, we have accomplished the stereoselective synthesis
of the ABC-ring system of hemibrevetoxin B (1). The present
synthesis would be also effective for the construction of ether
ring systems of other marine polycyclic ethers such as
brevetoxin B. The total synthesis of hemibrevetoxin B (1) is
now in progress.
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